Sunday, September 11, 2022

Ellipse

 You might recall from math classes that in a circle, the center is a special point. The distance from the center to anywhere on the circle is exactly the same. In an ellipse, the sum of the distance from two special points inside the ellipse to any point on the ellipse is always the same. These two points inside the ellipse are called its foci (singular: focus), a word invented for this purpose by Kepler.

This property suggests a simple way to draw an ellipse (Figure 3.4). We wrap the ends of a loop of string around two tacks pushed through a sheet of paper into a drawing board, so that the string is slack. If we push a pencil against the string, making the string taut, and then slide the pencil against the string all around the tacks, the curve that results is an ellipse. At any point where the pencil may be, the sum of the distances from the pencil to the two tacks is a constant length—the length of the string. The tacks are at the two foci of the ellipse.

The widest diameter of the ellipse is called its major axis. Half this distance—that is, the distance from the center of the ellipse to one end—is the semimajor axis, which is usually used to specify the size of the ellipse. For example, the semimajor axis of the orbit of Mars, which is also the planet’s average distance from the Sun, is 228 million kilometers.

Drawing an Ellipse. Panel (a), at left, illustrates how to draw an ellipse. The center of the ellipse is marked with a red dot, and the two thumbtacks in grey. A hand holds a pencil and traces out the ellipse using the string attached to the thumbtacks. Panel (b), at right, shows the both semimajor axes of the ellipse: the distances from the center to the edges farthest from the center.
Figure 3.4 Drawing an Ellipse. (a) We can construct an ellipse by pushing two tacks (the white objects) into a piece of paper on a drawing board, and then looping a string around the tacks. Each tack represents a focus of the ellipse, with one of the tacks being the Sun. Stretch the string tight using a pencil, and then move the pencil around the tacks. The length of the string remains the same, so that the sum of the distances from any point on the ellipse to the foci is always constant. (b) In this illustration, each semimajor axis is denoted by a. The distance 2a is called the major axis of the ellipse.

No comments:

Post a Comment

Last Chance to Register - Geospatial Intelligence and AI Webinar Tomorrow

With Data Labeling for AI  ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌...